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The final goal of this work is the solutions of the Klein-Gordon equations on NCMS in
terms of the horospheric coordinates [1], [2]. By analogy with the classical case, the solutions
are products of g-cylindric functions. The reduction of these solutions to NCLS, NCILS and
the non-commutative cone is straightforward.

Notations.
Classical variables are denoted by small letters, while their non-commutative deformation
(quantization) by capital letters. We do not introduce a special notation for the non-
commutative multiplication.

The coordinates (z1,Z2,T3,4) or (yo,y1,Y2,y3) of the Minkowski space M* we identify
with the matrix elements of the matrix x

- (22)
T3 T4
= yOId—{-Zeayaaa, € =1, ori. (1)
(o)

The choice 1 or ¢ in front of y, defines the signature of the Minkowski space. The
generators of the non-commutative Minkowski space we also arrange in the matrix form

x-(3 2. @

The deformation parameter is ¢ = exp 8 € (0, 1], or ¢ = expif, (|g| = 1).

1 Horospheric coordinates on the classical Minkowski spaces

There are two types of Minkowski spaces with the signature (+,—,—,—) and (+,+,—, —).
The first one allows us to describe the Lobachevsky space L and the Imaginary Lobachevsky
space IL. We will consider first of them.

1.1 Minkowski space in the horospheric description

The Minkowski space M3 can be identified with the space of Hermitian matrices

M1’3={xeMatC|xT=x}, (Z1 =21, To =23, Ty = 34).
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The metric is ds? = det(dx) = dr1dz4 — dzadz3. Another set of coordinates is y,,
(a =0,...3) corresponds to the choice €, =1 in (1)

3
x=Zyaaa, oog=1d.

a=0
It leads to the metric

3
ds® = dyg - Zdy]z.
j=1

The group SL(2, C) is the double covering of the proper Lorentz group SOg(1,3) and acts on
the Minkowski space M'3 = {yo,...,y3} as

x—+g'xg, ge€SL(?,0), (3)
where g' is the Hermitian conjugated matrix. The action preserves
detx = yg — y% — y% - y% = T1T4 — T3Z2

and thereby the metric on M3,

The time-like part M3+ of M3 corresponds to the matrices with detx > 0, while
det x < 0 corresponds to the space-like part M!3~. The equation det x = 0 selects the light
cone

C!? = {x: detx = 2174 — zo73 = 0}. (4)

We introduce the horospheric coordinates x ~ (r, h,z,Z). If 1 # 0 then
z1=rh, 3 =rhz, z3=rhz, (5)

zq = r(h|z|® +eh™1).

Here
z€C, he R\0, e ==+1,0, r’c = detx.
and
Z = a:za;fl, zZ= 313331_1, r=4/|detx|, for detx #0,
o z1(|detx|)~1/2 for e==1,
T for e=0.
The case € = 1 corresponds to the time-like part of M3, ¢ = —1 corresponds to the space-like

part and € = 0 to the light-cone C!3.
The horospheric coordinates on the light-cone C!3 are (h, z, 2)

z1 =h, o =hz, 23 =43, x4 = h|2|2. (6)

To describe the case £ = 0 we put e = —1, h = 0, 7 < oo and z — oo such that limhz =
exp(it), zo = r exp(it) and x4 takes an arbitrary real value. Thus, the horospheric description
has the form

(r,exp(it), z4), =2 =rexp(it) z3 = rexp(—it).
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Consider the commutative algebra S(M!3) of the Schwartz functions on M%3. The in-
variant integral with respect to the SL(2,C) action on S(M'3)

I(f) = /f(l'l,.’E2,$3,l’4)d$1d.’1)2d$3d1174

takes the form in the horospheric coordinates

I(g) = / g(2, z, h,r)r*hdrdhdzdz, g€ S(M'®).

1.2 Homogeneous spaces, embedded in M!?3

The action of SL(2,C) (3) leads to the foliation of M!3. The orbits are defined by fixing
det x. The quadric
L= {detx=7r2>0, x>0}

is the upper sheet of the two-sheeted hyperboloid. It is a model of the Lobachevsky space.
The metric on L is the restriction of the invariant metric dzidzs — dxodxs on r = const.
In what follows we assume rg = 1. The horospheric coordinates on L have the restrictions
h > 0. Since SU(2) leaves the point yo = 1, yo = 0 the Lobachevsky space is the coset
L ~ SL(2,C)/SU(2) ~ SOp(1,3)/SO(3).

Consider the commutative algebra S(L) of Schwartz functions on L. Functions from S(L)
are infinitely differentiable with all derivatives tending to zero when |z| — co, h = 00, h = 0
faster than any power. Let I,z be the ideal in § (M13) generated by f(detx — r3) = 0.
The algebra S(L) can be described as the factor-algebra S(M'?)/I; with the additional
condition z; > 0. In the similar way we describe the upper sheet of the light-cone C!3 as
S(M3)/Iy. The horospheric coordinates (5) being restricted on C'* satisfy the condition
(r=1, h>0, e =0). CH¥* is the quotient SL(2,C)/Bc, where Bc is the subgroup of the

form _
Bo={( 6w}, wec).

IL = {detx = —1}

The space

is called the Imaginary Lobachevsky space. The corresponding quadric is y2 — > o y2 = —1.
It is the de Sitter space:

IL ~ SL(2,C)/SU(L,1) ~ SOg(1,3)/S00(1,2),

since
glosg =03, for geSU(L,1).

As before, S(IL) ~ S(M!?)/I_1, but in contrast with the L and C* the horospheric radius
h of IL can take an arbitrary value h € R\ 0. We partially compactify IL with respect to the
coordinate h. Two "limiting” spaces E* = {h — %00} are called absolutes. It follows from
(4) and (6) that E* can be considered as the projectivization of the cone C3. The both
absolutes are homeomorphic to C and therefore can be compactify to EF ~ CPL Note, that
while = are two components of the boundary of the IL, =" is the boundary of C13t+ and
the L.
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2 Laplace operator and its eigenfunctions

In this work we generalize to the non-commutative case the following facts concerning the
eigenfunctions of the Laplace operator.
The solutions of the Klein-Gordon equation on M

Af, (1, To, T3, T1) = V2 fu (21,22, 23,24)

9? 9?
& 8:1118.’174 B 61236:112 ]

are the exponents

ful@1, 02,3, 74) = exp(éz), (62) = ) &,
v = €164 — ol

We will consider A and its eigenfunctions in the horospheric coordinates. The metric on M3
in the horospheric coordinates takes the form

ds? = g;pdzjdzy = edr® — er?h™2dh? — r?h?dzdz .
Then one can rewrite A = Wajgj k(det g)'/20y, and we come the eigenvalue problem

r=2 h2—i 139 +4sh~2—82— —r2—éﬁ _gl £,z h,z7) = V2 fu(Z, by z3r) . (7)
Oh? oh 020z or? Py | PN TETIE T T SRR
Let Z,(x) be a cylindric function. We will prove the non-commutative analog of the following
statement

Proposition 1 The basic harmonics of the eigen-value problem (7) are
£,(2 by 27) = 7 explinz + 6a2) X Za(rv) Zo(2ie?|ulh™t) e = £1, (8)
and
fu(Z,h, z;7) = h* Lexp(ipz + ipz), =0, o =1t +1,
where p,a € C.

It follows from (7) that the restrictions of the Klein-Gordon equation to the homogeneous
spaces assume the form

h —8h—2+3‘8—h+45h BZ0z f,/(h,z,Z)_—‘(V —l)f,,(h,Z,Z),

Loe=1, ILse=-1.

Thus, we come to the following statement
Corollary 1 The basic harmonics on L, IL and the light-cone C13 are
fu(7, by 2) = b~ explipz + if2) 2,0, (2ie3|ulh™") e = 1, 9)

and
fu(Z,h,2) = R Yexp(ipz +iaz), €=0, =12 +1. (10)
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3 Non-commutative 4d Minkowski space M};‘;’

3.1 Definition

We define an algebra generated by matrix elements of (2).

Definition 1 The non-commutative 4d Minkowski space M}s’s’, 0< q<1,0 €N is the unital
associative algebra with the anti-involution * and four generators X;, j = 1,...,4 with the
quadratic relations

X1X3 =q°X3X1, X1Xo=¢"Xa2X1,
[Xa, X3] = ¢°2(1 — ¢*) X1 X4, (11)
XoXy = ¢ 2X4Xo, X3X4=q ""?X4X3,
[X1,X4]=0,XF=X1, X3 =X3, X; =X4.

This space was described in [3]. Following this approach we cast the relations in M}S’Z’ in the
form of the reflection equation. Consider the basis in Mat(2)

10 0 1 0 0 00
5=(50) m=(00) m-(10) 2=(c1)

Define two R-matrices

R(Q)=q¢  E\®E+E4®E) + (E1®Es+Es® E1) +q ' (1 - ") B3 @ Bz,
R (q) = (E1® BE1 + B4 ® By) + ¢" (1 ® B4 + E4 ® ).
It can be checked straightforwardly that the relations (11) are equivalent to the reflection

equation
R@XV RO (9)X® = XORA (@XVR!(g),

where X(1) = X ® Id and X = Id ® X and

R(q) = ¢ '(E1®E1+E4®Ey)
+ (B1®Es+Es®E)+q '(1-¢")E; ® Bs.

The algebra M;’;' has two independent Casimir elements
K =X2X!, Ky=X1X4—q°X3X>. (12)

The Casimir operator K», see (12), is the quantum determinant Ko = det; X. In an irre-
ducible module over M};”g this operator is a scalar: Kp = er2 € R. It allows us to define
the time-like part M3t

g (¢ = 1), the space-like part Mg’;, (¢ = —1), and the light cone
C,;,q, (8 = 0).
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3.2 Quantum Lorentz group action on M};,’Z

We start with a pair of the standard U, (SL2) Hopf algebra [4]. The first one is generated by
A, B,C, D and the unit 1 with relations

AD = DA=1, AB = qBA, BD =¢DB,

AC =¢7'CA, CD =q'DC, (13)
1
q—q!

There is a copy of this algebra Uy (SLg) generated by A*, B*,C*, D* with the relations
coming from (13) U*V* = (VU)*. They commute with A, B,C,D. The pair Uy(SLy),
Uy (SL2) forms a Hopf algebra ugs)(SLZ), where the coproduct and the antipode are twisted
in the consistent way

[B,C] = (A% - D?).

A(A) = A® A,
A(B) = A® B+ B® D(A*)’, (14)
A(C)=A®C+C®D(4")".

S( A B ) _ ( D —q }(A*)™°B )
C D —q(A*)*C A
The counit on Ués)(SL(Z,C)) assumes the form
e(A) =1, &B,C)=0. (15)
There is the Casimir element in Ués) (SL(2,C)) which commutes with any u € Uy(SL2(C)):

(' +q)(A2+47%) 4
2(q7! - q)?

M},’g it is a right module over the Hopf algebra L{és)(SL(Z, Q)).
We define the action of the quantum group Z/{(gs)(SL(Z, C)) on M}:Z’:

( X1 Xo ) A= g2 X, q_%Xz
. = 1 1 )
Xs X4 72 X3 ¢ 2X4

Q= + %(BC’ +CB). (16)

1-§ 1-6
( X1 X ) A = q6—X1 q681X2 (17)
. — 1 . .
X3 X4 qg- Xz g+ Xy
The direct calculations show that the commutation relations in les,’g are compatible with the
coproduct in L{(gs) (SL(2,C)).
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Similarly, one can define the left action of L{és)(SL(2, C)) on M:ls,’g- Let
w(m, k,l,n) = XPXEXL XD

be the ordered monomial. Define the Schwartz space S (M}”g) as the series with the rapidly
decreasing coefficients

S(M"®) = {1 (Xs, X1, Xa, X2)t = 3 ampgnw(m,k,ln), ampsn €C},  (18)

m,k,l,n

with .
|am,k,l,n| < (1 + m2 + k2 + l2 ¥ n2)],

for any j € N, when |m|, ||, |I|, |n| = oo.

Proposition 2 The Jackson integral
(1) = [ dypXodg Xrd Xad Xabf (X1, Xa, X, Xo)t (19)

is an invariant functional on S (M(l;”g) with respect to the following action of Ugs)(SL(2,C)):
(f.u) = e(u)(f) , where e(u) is the counit (15).
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4 Horospheric description

4.1 Horospheric generators

We introduce another set of generators — the non-commutative analog of the horospheric
coordinates (Z2*,H,Z,R), (H* = H, R* = R, (Z*)* = Z)
Xi=RH, Xs=RHZ, X;=RZ'H, (20)

Xys=R(Z*HZ +eH™), =41, 0. (21)

The defining relations
ZH=q%HZ, 7Z*H =’HZ*,

[R,H|=[R,Z]=[R,Z*] =0,
ZZ* =¥ 22*7 —eg® 21 — P )H 2. (22)
yield the relations (11). The Casimir elements are

Ky =¢R?, Ky = R¥?H*"%(Z*HZ + eH™')°. (23)

The inverse relations assume the form

H=R'X,, Z=X['Xo, Z*=2X3X{',

R = EKl .
In terms of the horospheric generators the action of Més) (SL(2,C)) takes the form
Z* A =2, HA=qgH, ZA=q 'z,
Z*A* =g 2" HA* =g H, ZA*=12,
Z*B =0, HB=0, ZB=q1,
Z*C=¢>°H?, HC=HZ, 7.0 =—q322,
RA=R, RA*=R, RB=0, RC=0. (24)

It follows from these relations that R is invariant with respect to the ugs)(SL(2,C)) action
R.u = e(u)R.
Define the analog of the Schwartz space S (M};,’g), see (18), in terms of the ordered mono-

mial @(m, k,n) = Z*™H*Z". Since R is a center element its position is irrelevant. Let

12 H,Z,R)i= Y ampnsb(m,k,n)R, ampni€C. (25)

m,k,n,l
For § (M;’g) the coefficients satisfy the condition
lampenil < (1 +m? + k2 + 1% +n?),

for any j € N, when |m|, k|, |I|, |n] = oo.
The invariant integral (19) is well defined functional on (25). It assumes the form

I2(f) = / dpZ*dpHdpZdpRif(Z*, H, Z, R)HY .



Bectuuk TT'Y, 1.11, BBIn. 1, 2006

4.2 Homogeneous spaces

Consider an irreducible representation of algebra (22). Then one can fix the Casimir operator
(23) K, = €R?, R? = r? € R*. It allows us to define the non-commutative analog of
Lobachevsky spaces and the cone. Let us fix the ideal I, = {Ky — er? = 0}. Then

SMy)/L ~ L (e=1),
~ IL (e=-1),
1,3
As we observed above the action of the quantum Lorentz group preserves these spaces. It

justifies the notion of homogeneous spaces in the noncommutative situation.
We can directly define their generators using the horospheric description of M}s’g.

Definition 2 The non-commutative Lobachevsky space Ls g (Hz), the non-commutative Imag-

inary Lobachevsky space ILsq (dS3) and the non-commutative cone C;’g are the associative
unital algebras with an anti-involution and the defining relations

ZH=q%HZ, Z*H =’HZ*,
Z27* =¥ 27" 7 — 21 — A)H2.
(Z)¥=2*, H*=H,
Hy ~e=1, dS3 ~e= -1, C}S,’;‘;’ ~e=0.
In addition we define the non-commutative absolute.

Definition 83 The non-commutative absolute 54 is the associative algebra with two gener-
ators and the commutation relation

27 =q %77, (26)

5 The Laplace operator and its eigen-functions
5.1 The Laplace operator on M}s,’g

Consider the action of ués) (SL(2,C)) on the ordered monomials w(m, k,I,n) = XPXF X, X7
It follows from (17) that

m+k—l—-n

w(m,k,l,n).A = q 2 w(m, k,l,n),
w(m, k,l,n).A* = ¢ o i w(m, k,1,n),
w(m, k,l,n).B = (27)
mth=l=n 1—g%"
g (1) — qq2 wim,k+1,L,n—1)+
21
—q

T 1 — g%k
st L y(m,k — 1,0,n + 1)

w(m, k,l,n).C = ¢

+ q

2
B e G Ok i ;n w(m —1,k,1+1,n).

1—-g¢q
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Introduce the group-like operator M that acts on M}S’Z’ as

1 1
(Xl X2>.M= ¢X X ) (28)
X3 X4 92 X3 q2Xy

It has the following properties
M*=M, AM)=MeM, M)=1,
S(M) =M1

Evidently, M commutes with A4, B,C and A*. Define the Hopf algebra U;(GL(2,C)) gen-
erated by A, B,C and M. It is the quantum deformation of the classical algebra GL(2,C).
Let
1 1
(G 2M™" — g2 M)’
Qg M= . 29
N 3

Consider the following Casimir element of U, (GL(2,C))
Ag = [Qq — QulR% (30)

This operator is the quantum analog of the Laplace operator A, see (7). Define the partial
differentiation acting on w(m,k,l,n) in such a way that it does not break the ordering.
It means, in particular, that the differentiation of the ordered monomial with respect, for
example, X takes the form

1_q2k

DXlw(m7k7l’n) o= 1 q2

w(m,k —1,1,n).

Let Tx f(X) = f(¢X).

Proposition 3 The action of the Laplace operator on M}s,’g assumes the form

f(X3, X1, X4, X2).Ag = (31)
1 —1yp—1mp—1 A -1 2
{ (q— q-1)2 [‘1 (TX1 TX2 TX3TX4 - Tx1 TXzTX3TX4

+Tx, T, Tty Ty = Tty Tty Ty Ty ) — 4T, T T T + T T T T
: e — — —k(=4 A —1l(1-40
T, T, T, Ty, — To T, T Txh) | + 6Tt O VT3 13273, ™ D, D,
W ~1(3—8
+@ 0T O Ty, Ty, T )DXIDX4} F(X3, X1, X4, Xa).

Remark 1 In the classical limit limg_,1 Aq = A, see (7).

5.2 The Laplace operator on M§7§’ in terms of the horospheric generators
Define the ordered monomial
w(m, k,n) = (Z*)"H*Z",

and let
F(Z*,H,Z2) =) ampnd(m,k,n).

m,k,n

Consider the action of the operator A, on the Schwartz space (18).
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Proposition 4 The action of the Casimir operator A, in terms of horospheric generators
takes the form

F(Z*,H,Z,R).Ay = (32)
o e [
(1 —g?)?
+eq'°Dy Dy tH 2T F(2*, H, Z,R)} .

q_lTH - q2 +qT};1] F(Z*vH, ZaR)

Remark 2 In the classical limit (32) takes the form of the Laplace operator in horospheric
coordinates limg_,1 Ag = A, see (7).

Our main goal is to find the eigen-functions of A,

)
F,(Z*,H,Z,R).A, = [-’21] _F,(Z',H,Z,R). (33)
q
These functions are expressed through the g-exponents and the three types of g-cylindric
functions. For |q| # 1 they can be defined by the expansion

1 20 q(2—6)m(m+a)za+2m

U (2) =
a8 = TPyt p(a+ 1 2 ¢, ¢*)m (g2, ¢?)m202™ &
q m=0
SR T
j= 25 + 2(5+2,

where T'j2(a + 1) is the ¢*-I-function. We assume that
2|
2(1-¢%)
The non-commutative analog of the horospheric elementary harmonics (8) has the following
form

<1l for 6=2.

Proposition 5 The basic solutions of (33) are defined as
F,(Z*,H,Z,R) = e(iZ*)Vo(H)e(nZ)E, o(R), (e #0),
where p,a € C,
Vo(H) = H7'ZE(2(-e)?|ulg™?H™),
- 1 @) 0 1-v21 — 4"
Eva(R) = Ez&’(zq v/ =B

Represent the solutions in the form
F,(Z*,H,Z,R) = V,(Z*,H,Z)E, +(R) .
Substituting it in (33) and using the comultiplication relations (14), we find
(Vo(Z*, H, Z).Q) (Eu,0(R).Qq) R72
— (Va(Z*,H, 2) Qq,11) (Ev,a(R) Qq,1) R
V12

5 [—2-] 2 Vo(Z*,H,Z)E,o(R) = 0.

99



Becthuk TI'Y, 1.11, BBIN. 1, 2006

It follows from (24) that it can be rewritten as
(Va(Z*,H,Z).Q) Evo(R)R™?
—Va(Z*, H, Z) (Ev,a(R) QquR~?)

14 * e
& [5] | Va(Z" H, 2)Eya(F) =0

In this way we come to the equations

—a+2 __ 2q2 + qa+2

Va(Z*, H,2).04 — 1 =L Vo(Z* H,Z) =0, (35)
and
_ i q—u+2 i 2q2 + qu+2 ) q-a+2 . 2(]2 + qa+2
5,0 B)- Qg + Bual) (T Tt - L hnt ) =0 3

From (28) and (29) one rewrites the equation (36) as
GEvald™'R) = (¢*2 + ) Z,a(R) + ¢*EualgR) = (1 — ¢")*Eva(R).
Put
¥ = 2q—u/2(1 r u)(l _ 2)—1R

Then we come to the difference equation for g-Bessel functions with § = 1 and z8 (z)
BualR) 1
Consider now (35) and put

Vo(Z*,H, Z) = e(iZ*)Va(H)e(nZ) . (37)
Assume that e = +1 and
0 q2)2k -2

kz ’q 2a+2,q2)k

—a—2k-1

Substituting this expression in (37), we express V,, in terms of monomials w(m, k,n). Using
the action of £, on monomials we obtain

2)2k -2
Z Ck (q2 2a+2 q2)kq—a—2k+2(1 pt q2)(1 _ q2a+2k)H—a—2k—1e('uZ)
k ,
2 = )% (a+2k+2)(6—1) 2%k—3
- € e = “HHT* % %e(uZ) =0.
lule(az*)) T q2)k 2a+2 R (1Z)

k=0
Then the coefficients cj, satisfy the recurrence relation

20-+4k+2—6(a+2k+2)

Ck+1 = —EHUCKY
G = (—e)F|ufthg@rOkk)
Then
0 (2—0)k(k+a) (1 _ 422k
Pl q (1 =)™ _8(atak) (s, \S+k —a—2k—1
Ho(H) =q2 & —g)® q 2 )2 TP HT® :
o) = a ¥ L Sy e g ()

These series coincide with (34) up to a constant multiplier after replacing 2z by (—)1/2q012F 1,
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Remark 3 In the classical limit we come to Proposition 2.1

31_?} e(nZ*)Va (H)e(ru’Z)Eu,a(R) = exp(ipz + iﬁ'z)va(h)XV,a(T) :

As in the classical situation one can restrict the operator A, on the non-commutative homo-
geneous spaces.

Corollary 2 The restrictions of Aq assume the form
1
(1-¢?)?
1
(1-¢%)?

Then we obtain the non-commutative deformations of the classical formulas (9), (10).

Lq’g 5 3 Aq = [q3TH — 2q2 + qTEI] + ql—JDZ’~ DzH_QTI‘;_l .

ILq,cS y - Aq = [quH = 2(]2 + qTI}I] — (]1_6Dz~~ljzlf__zTg_1 .

Corollary 3 The basic harmonics on the non-commutative L, IL and the light-cone C;’g
are

Fy(2,h,2) = e(nZ*)H'2) (2ic |u|H )e(uZ), €= =1,

and
Fy(Z,h,2) = e(:u'Z*)Ha_le(/l’Z) y €=0.

Here v2 = a2 — 1.
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